# UVa 10816

## Summary

A straightforward shortest path problem.

## Explanation

There are many possible ways to solve this task. The easiest one is applying Shortest Path algorithm (Dijkstra, Floyd-Warshall, Bellman-Ford etc.) twice. Read the problem description carefully; the process is explained there clearly.

```3 3
1 3
1 2 10.0 10.0
1 2 11.0 9.0
2 3 11.0 10.0
10 100
1 10
2 8 0.1 33.5
10 5 35.9 27.9
3 5 14.6 10.6
2 8 49.2 36.2
6 3 43.7 2.8
2 5 15.4 30.3
2 7 39.6 11.9
8 7 3.9 37.2
10 3 30.0 6.8
6 5 31.2 30.4
3 4 16.5 7.4
4 9 14.5 34.8
3 8 36.0 3.8
4 2 27.9 33.0
7 6 34.3 19.1
9 7 44.3 24.1
5 9 30.6 24.7
1 10 35.1 37.1
7 2 4.9 39.4
10 4 45.5 8.5
7 1 37.7 16.7
2 9 44.0 14.5
7 4 3.9 33.8
9 3 4.2 13.0
4 6 15.9 24.0
5 1 30.7 37.8
4 7 24.6 22.2
5 3 33.0 27.1
8 4 1.3 29.8
7 1 13.7 36.2
6 8 7.5 5.6
2 3 15.1 15.1
2 5 43.1 36.7
8 2 33.8 0.8
6 10 25.9 21.0
2 9 44.7 2.3
7 1 16.9 1.4
1 2 15.6 36.3
1 10 3.8 2.5
9 4 4.2 39.6
3 1 33.7 29.2
5 1 2.2 19.7
9 10 48.5 6.9
2 5 50.0 5.4
1 9 46.8 12.8
9 4 48.4 24.9
8 2 11.8 31.1
4 5 11.7 31.0
6 2 25.0 20.1
10 7 30.4 39.9
5 9 11.0 24.5
10 3 48.6 39.6
4 8 0.4 11.5
9 1 11.9 25.9
1 7 28.2 39.9
10 9 15.8 1.0
9 3 18.0 3.9
1 8 19.2 35.9
6 9 1.2 35.7
3 5 5.6 27.3
9 7 38.7 36.3
6 4 14.3 27.0
5 7 49.9 28.2
3 2 20.0 2.2
8 7 39.0 29.3
6 3 1.1 20.1
4 10 18.9 26.2
2 10 42.4 5.6
3 6 28.6 18.3
9 7 25.8 21.8
10 5 19.0 12.2
7 10 19.3 36.9
5 10 1.3 24.2
6 1 25.4 11.9
10 4 49.7 28.0
8 10 43.8 15.0
7 10 19.6 19.4
8 7 10.6 28.7
9 3 23.5 5.6
5 2 17.2 11.7
7 4 35.6 31.4
6 4 30.9 11.3
3 6 25.7 31.4
2 9 48.3 4.7
2 5 22.3 39.7
10 2 45.1 33.6
4 7 16.0 4.5
3 10 2.5 5.4
5 1 15.0 34.6
7 4 2.3 7.5
8 6 39.2 35.9
3 6 41.5 7.8
3 10 7.1 23.4
9 8 27.1 17.4
4 9 48.6 39.3
3 1 12.8 1.4
3 10 12.6 12.8
4 5 47.3 22.4
4 3 9.4 30.6
6 2 14.3 9.3
10 100
1 10
3 7 40.1 26.5
8 1 47.5 1.4
6 4 26.1 11.2
7 8 5.1 8.6
1 5 12.5 29.6
10 6 19.5 17.7
9 3 46.7 17.2
9 4 48.5 25.2
9 5 15.3 32.0
1 8 42.7 26.1
1 8 31.6 17.1
7 8 25.9 4.4
5 10 8.7 28.3
6 8 47.5 37.8
6 8 42.9 3.0
4 1 46.3 10.3
4 7 26.2 13.8
5 1 11.7 20.3
1 7 27.2 21.2
2 8 2.1 35.4
1 5 26.4 18.9
1 2 33.0 26.3
1 4 7.9 15.9
6 8 20.1 27.8
9 10 26.1 30.4
8 5 10.9 7.8
4 8 35.1 20.2
1 9 38.5 19.4
6 1 20.5 31.2
6 7 35.1 7.3
4 6 21.7 15.7
7 8 35.8 12.7
8 2 36.2 27.0
7 3 11.3 1.8
8 7 4.2 38.6
4 10 6.6 23.0
10 3 35.6 29.7
4 3 23.5 38.5
5 3 37.0 25.8
3 4 48.4 20.8
2 6 34.9 6.8
6 9 14.3 22.4
5 2 17.6 34.2
10 6 37.1 2.2
7 5 28.4 0.6
1 9 20.2 28.0
4 5 3.5 3.8
7 4 20.6 17.7
3 9 30.1 28.2
4 2 35.6 25.6
2 8 17.9 2.5
3 4 17.4 29.7
1 4 7.3 7.6
9 1 43.3 21.8
3 6 33.2 37.0
1 9 9.1 28.6
8 10 14.6 39.1
4 5 24.1 25.2
5 9 26.0 33.6
3 6 18.2 6.5
4 10 10.9 17.6
3 8 5.7 35.0
2 8 4.2 6.8
10 1 17.5 21.4
2 8 18.4 21.6
4 3 10.2 22.5
3 10 42.9 27.1
8 5 28.7 7.6
9 1 34.8 28.8
5 4 16.4 2.2
7 4 17.2 21.1
10 1 4.3 16.5
10 4 20.5 39.2
9 3 20.6 35.1
6 10 42.3 30.4
9 8 14.9 38.5
2 5 7.6 11.4
6 3 17.9 34.7
10 3 48.6 12.0
10 5 4.1 6.6
6 9 37.1 31.9
2 4 47.3 33.3
3 8 26.4 17.1
2 4 2.8 2.4
1 10 6.6 1.6
9 4 8.9 14.8
4 8 46.4 1.0
10 2 34.3 38.9
9 1 25.9 2.2
5 9 19.1 14.7
10 4 12.1 23.1
9 8 28.4 13.7
6 7 3.9 38.6
4 10 24.9 2.5
4 10 26.7 25.8
5 6 22.7 11.9
2 6 0.2 35.6
10 7 1.6 18.5
5 3 41.4 7.6
3 7 7.3 34.9
```

```1 2 3
19.0 11.0
1 5 10
43.9 2.2
1 10
16.5 4.3
```